Acta Cryst. (1998). C54, IUC9800042 [doi:10.1107/S0108270198099405]

Piperazine-1,4-diium Dihydrogendiphosphate

M. Charfi, A. Jouini and M. Pierrot

Abstract

 $(C_4H_{12}N_2)H_2P_2O_7$ is a typical layer organization built by organic and inorganic groups centred by planes parallel to (1 0 0). Unit formula consists of one acidic anion and two half organic cations crystallografically independent. $H_2P_2O_7$ have no internal symmetry whereas the piperazinium cations are centrosymmetric. Inorganic layers are built by strong hydrogen bonds. The cohesion of the structure results from a network of a weak hydrogen bonds.

Comment

The diphosphate class has been well investigated when compared with the other classes of condensed phosphates. Acidic anions of formula $HP_2O_7^{3-}$, $H_2P_2O_7^{2-}$ and $H_3P_2O_7^{-}$, usually observed in the diphosphate chemistry, where frequently associated to mineral cations. So that several anhydrous inorganic diphosphates have been described. Nevertheless a few sructure of organic diphosphates were crystallographically established. Among them the greater part of compounds are anhydrous and found to include the $H_2P_2O_7^{2-}$ anion. Their atomic arrangements are always organized in infinite networks which can adopt two geometries; (i) ribbons such as observed in (NH₃C₂H₄OH)H₂P₂O₇ (Averbuch-Pouchot and Durif, 1992) and in (NH₃C₂H₄HH₃)H₂P₂O₇ (Averbuch-Pouchot and Durif, 1993), (ii) layers as encountered in (C₃H₁₂NO)₂H₂P₂O₇ (Gharbi and Jouini, 1996). The title compound is an additional example for such compounds. It has a typical layer organization. Two types of layers are present in this structure; the first one, centred by planes at x=1/4 and 3/4, consists of the H₂P₂O₇ phosphoric groups; the second one, at x=0 and 1/2, parallel to the first, contains organic cations. Each H₂P₂O₇ is linked to four neighbour groups, by two donors and two acceptors strong hydrogen bonds since the corresponding O-O distances [2.457 (2) and 2.611 (2) Å] are as short as in the PO₄ tetrahedron. In a such formed polyanion of formula $[H_2P_2O_7]_n^{2n}$, the diphosphoric group has no internal symmetry and so is built by two independent PO₄ tetrahedra. As observed in all structures involving $H_2P_2O_7^{2-}$ anion, the P—O bonds, shorter than the P—OH ones, are in accordance with data relative to oxoanions (Ferrris and Ivaldi, 1984). Organic layer, constituted by two crystallographically independent piperazinium dications, is anchored onto both adjacent inorganic ones by N-H···O bonds. Organic dications are located respectively arround the inversion centres at (0 0 1/2) and (1/2 0 1/2). The two interactions O—H···O and N—H···O are responsible for the structure cohesion. The main geometric features of the organic and inorganic entities are reported in table 1. They are in accordance with what is previously observed for the substitued piperazinium cations in bis [1-(2-ammoniumethyl)piperazinium] cyclohexaphosphate hexahydrate (Charfi and Jouini, 1996) and in [1-(2-ammoniumethyl)piperazinium] cyclotetraphosphate trihydrate (Thabet and Jouini, 1997).

Computing details

Data collection: Kappa CCD Nonius; cell refinement: Kappa CCD Nonius; data reduction: *DENZO* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SHELXS86* (Sheldrick, 1990); program(s) used to refine structure: *SHELXL93*

CIF access

(Sheldrick, 1993); molecular graphics: *MOLVIEW*; software used to prepare material for publication: *SHELXL93* (Sheldrick, 1993).

 $V = 1012.7 (4) \text{ Å}^3$

 $\mu = 0.45 \text{ mm}^{-1}$ T = 293 (2) K

 $0.35 \times 0.15 \times 0.12 \text{ mm}$

Z = 4 Mo *K*α

Piperazinium dihydrogendiphosphate

Crystal data
$C_4H_{12}N_2^{2+}H_2P_2O_7^{2-}$
$M_r = 264.11$
Monoclinic, $P2_1/c$
<i>a</i> = 11.749 (2) Å
b = 6.849 (2) Å
<i>c</i> = 12.592 (2) Å

Data collection

 $\beta = 91.80 (3)^{\circ}$

Kappa CCD Nonius diffractometer	2005 independent reflections
Absorption correction: none	1765 reflections with $I > 2\sigma(I)$
2005 measured reflections	$R_{\rm int} = 0.0$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	193 parameters
$wR(F^2) = 0.090$	All H-atom parameters refined
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
2005 reflections	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Selected	geometric	parameters	(Å,	°)	ł
	0	p	(,		

P1—OE11	1.4132 (14)	P2—OE22	1.621 (2)
P1—OE13	1.537 (2)	P1—P2	2.932 (1)
P1—OE12	1.539 (2)	N1—C2	1.495 (3)
P1—OL12	1.6387 (14)	N1—C1	1.526 (3)
P2—OE21	1.4068 (14)	N2—C4	1.478 (3)
P2—OE23	1.544 (2)	N2—C3	1.526 (3)
P2—OL12	1.5680 (14)	C1—C2 ⁱ	1.482 (3)
OE11—P1—OE13	110.45 (10)	OE21—P2—OE22	110.44 (9)
OE11—P1—OE12	110.43 (10)	OE23—P2—OE22	112.77 (9)
OE13—P1—OE12	117.64 (12)	OL12—P2—OE22	105.41 (8)
OE11—P1—OL12	107.93 (8)	P2—OL12—P1	132.24 (9)
OE13—P1—OL12	98.48 (10)	C2—N1—C1	112.9 (2)
OE12—P1—OL12	111.02 (9)	C4—N2—C3	105.9 (2)
OE21—P2—OE23	115.67 (9)	C2 ⁱ —C1—N1	106.8 (2)
OE21—P2—OL12	106.11 (8)	C1 ⁱ —C2—N1	115.3 (2)

OE23—P2—OL12 105.55 (9) Symmetry codes: (i) -*x*+1, -*y*-1, -*z*+2.

References

Averbuch-Pouchot, M. T. & Durif, A. (1992). *Eur. J. Solid State Inorg. Chem.* 29, 411–418.
Averbuch-Pouchot, M. T. & Durif, A. (1993). *C.R. Acad. Sci. Paris, t.* 316 Ser. 2, 187-192.
Charfi, M. & Jouini, A. (1996). *J. Solid State Chem.* 127, 9–18.
Ferraris, G. & Ivaldi, G. (1984). *Acta Cryst.* B40, 1–6.
Gharbi, A. & Jouini, A. (1996). *J. Soc. Chim. Tunisie, N°11*, Vol. 3, 813-826.
Otwinowski, Z. & Minor, W. (1997). *Processing of X-ray diffraction data collected in oscillation mode in Methods in Enzymology*, Vol. 276: Macromolecular Crystallography, part A, pp.307-326, C.W. Carter Jr & R.M. Sweet, Eds. New York, London: Academic Press.
Sheldrick, G. M. (1990). *Acta Cryst.* A46, 467–473.

Sheldrick, G. M. (1993). Program for refinement of Crystal structure Univ. of Göttingen, Germany.

+du1173+Thabet, H. & Jouini, A. (1998). Acta Cryst. C In the press.

Scheme 1

 $\begin{bmatrix} & & & & \\ & H_2 N & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & &$

supplementary materials

Piperazinium dihydrogendiphosphate

Crystal data	
$C_4H_{12}N_2^{2+}H_2P_2O_7^{2-}$	$F_{000} = 552$
<i>M_r</i> = 264.11	$D_x = 1.732 \text{ Mg m}^{-3}$ $D_m = 1.71 \text{ Mg m}^{-3}$ D_m measured by pycnometry (toluene as pycnometric liquid)
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71069$ Å
<i>a</i> = 11.749 (2) Å	Cell parameters from 25 reflections
b = 6.849 (2) Å	$\theta = 3-25^{\circ}$
<i>c</i> = 12.592 (2) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 91.80 \ (3)^{\circ}$	T = 293 (2) K
$V = 1012.7 (4) \text{ Å}^3$	Elongated prism, colourless
Z = 4	$0.35\times0.15\times0.12\ mm$

Data collection

1765 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.0$
$\theta_{\text{max}} = 25^{\circ}$
$\theta_{\min} = 3^{\circ}$
$h = -14 \rightarrow 14$
$k = -8 \rightarrow 0$
$l = 0 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	All H-atom parameters refined
$wR(F^2) = 0.090$	Calculated $w = 1/[\sigma^2(F_o^2) + (0.0427P)^2 + 0.6486P]$ where $P = (F_o^2 + 2F_c^2)/3$?
<i>S</i> = 1.07	$\Delta \rho_{max} = 0.25 \text{ e } \text{\AA}^{-3}$
2005 reflections	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$
193 parameters	Extinction correction: SHELXL, $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct	Extinction coefficient: 0.012 (4)

Prin site location: structure-invariant direct methods

sup-1

Special details

Experimental. A dilute solution of diphosphoric acid is neutralized by the stoichiometric amount of the piperazin solution. The obtained solution, slowly evaporated at room temperature, gives thin single crystals unstable under normal condition of temperature and humidity. Indeed, the hydrate phase is converted to the studied anhydrous one over some mounths.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F^2 for ALL reflections except for 0 with very negative F^2 or flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The observed criterion of $F^2 > 2$ sigma(F^2) is used only for calculating *R* - factor obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	v	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.28701 (4)	0.11903 (7)	0.86547 (4)	0.0230 (2)
P2	0.21989 (4)	0.47375 (7)	0.74909 (4)	0.0230 (2)
OE11	0.39636 (11)	0.0411 (2)	0.88861 (13)	0.0359 (4)
OE21	0.10981 (11)	0.3931 (2)	0.74137 (12)	0.0319 (3)
OE22	0.26092 (13)	0.5417 (2)	0.63308 (13)	0.0348 (4)
OE23	0.23814 (13)	0.6331 (2)	0.83463 (12)	0.0361 (4)
OL12	0.30149 (11)	0.3022 (2)	0.78325 (12)	0.0318 (4)
OE12	0.23101 (15)	0.1859 (3)	0.96815 (13)	0.0493 (5)
OE13	0.2185 (2)	-0.0184 (3)	0.7912 (2)	0.0582 (6)
N1	0.46950 (15)	-0.2988 (3)	0.9883 (2)	0.0336 (4)
N2	0.02650 (14)	0.0835 (3)	0.60963 (15)	0.0301 (4)
C1	0.5219 (2)	-0.4035 (3)	0.8947 (2)	0.0338 (5)
C2	0.4084 (2)	-0.4341 (3)	1.0603 (2)	0.0369 (5)
C3	-0.0243 (2)	0.2022 (3)	0.5172 (2)	0.0335 (5)
C4	0.0916 (2)	-0.0761 (3)	0.5611 (2)	0.0339 (5)
HO22	0.250 (3)	0.459 (5)	0.574 (3)	0.077 (11)*
HO13	0.230 (3)	-0.137 (6)	0.812 (3)	0.069 (10)*
H1N1	0.424 (3)	-0.200 (4)	0.953 (2)	0.056 (8)*
H2N1	0.516 (3)	-0.232 (5)	1.033 (2)	0.064 (9)*
H1N2	-0.018 (2)	0.035 (4)	0.653 (2)	0.036 (6)*
H2N2	0.067 (3)	0.169 (4)	0.660 (2)	0.057 (8)*
H1C1	0.565 (2)	-0.311 (4)	0.854 (2)	0.045 (7)*
H2C1	0.470 (2)	-0.452 (4)	0.844 (2)	0.046 (7)*
H1C2	0.350 (2)	-0.485 (4)	1.001 (2)	0.047 (7)*
H2C2	0.380 (2)	-0.362 (4)	1.123 (2)	0.051 (8)*
H1C3	0.029 (2)	0.263 (4)	0.4808 (18)	0.031 (6)*
H2C3	-0.062 (2)	0.296 (4)	0.552 (2)	0.043 (7)*
H1C4	0.118 (2)	-0.155 (4)	0.625 (2)	0.041 (6)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H2C4	0.148 (2)	-0.015 (4)	0.517	' (2)	0.046 (7)*	
Atomic displa	icement parameter	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0181 (3)	0.0197 (3)	0.0309 (3)	0.0010 (2)	-0.0023 (2)	0.0011 (2)
P2	0.0217 (3)	0.0174 (3)	0.0298 (3)	0.0008 (2)	-0.0003 (2)	-0.0001 (2)
OE11	0.0192 (7)	0.0291 (8)	0.0590 (10)	0.0058 (5)	-0.0033 (6)	0.0075 (7)
OE21	0.0168 (6)	0.0337 (8)	0.0453 (9)	0.0008 (5)	-0.0010 (5)	-0.0059 (6)
OE22	0.0405 (8)	0.0295 (8)	0.0347 (9)	-0.0052 (6)	0.0037 (6)	0.0034 (7)
OE23	0.0459 (9)	0.0226 (7)	0.0397 (9)	-0.0027 (6)	-0.0020 (6)	-0.0050 (6)
OL12	0.0182 (6)	0.0242 (7)	0.0533 (9)	0.0046 (5)	0.0060 (6)	0.0113 (6)
OE12	0.0473 (10)	0.0621 (12)	0.0393 (9)	0.0256 (8)	0.0122 (7)	0.0114 (8)
OE13	0.0557 (11)	0.0220 (8)	0.094 (2)	-0.0036(7)	-0.0460 (10)	0.0001 (9)
N1	0.0240 (8)	0.0214 (9)	0.0551 (12)	0.0044 (6)	-0.0058 (7)	0.0034 (8)
N2	0.0197 (8)	0.0387 (10)	0.0321 (10)	-0.0093 (7)	0.0019 (7)	-0.0060 (8)
C1	0.0258 (10)	0.0356 (12)	0.0401 (12)	-0.0019 (8)	0.0020 (8)	0.0075 (9)
C2	0.0227 (10)	0.0371 (12)	0.0514 (14)	0.0048 (8)	0.0074 (9)	-0.0004 (10)
C3	0.0244 (10)	0.0289 (11)	0.0473 (13)	-0.0016 (8)	0.0041 (9)	-0.0021 (9)
C4	0.0199 (9)	0.0401 (12)	0.0413 (13)	0.0007 (8)	-0.0038 (8)	0.0026 (10)
Geometric pa	urameters (Å, °)					
P1—OE11		1.4132 (14)	N2—	-C3	1.52	26 (3)
P1—OE13		1.537 (2)	N2—	-H1N2	0.84	4 (3)
P1—OE12		1.539 (2)	N2—	-H2N2	0.9	7 (3)
P1—OL12		1.6387 (14)	C1—	$C2^{i}$	1.43	32 (3)
P2—OE21		1.4068 (14)	C1—	H1C1	0.9	7 (3)
P2—OE23		1.544 (2)	C1—	H2C1	0.9	3 (3)
P2—OL12		1.5680 (14)	C2—	C1 ⁱ	1.4	32 (3)
P2-OE22		1 621 (2)	C2	H1C2	1.0	5 (3)
P1—P2		2.932 (1)	C2—	H2C2	1.0	(3)
OE22—HO22		0.94 (4)	C3—	C4 ⁱⁱ	1.5	15 (3)
OE13—HO13		0.87(4)	C3—	H1C3	0.8	9 (2)
N1-C2		1 495 (3)	C3—	H2C3	0.9	(2)
N1-C1		1 526 (3)	C4	C3 ⁱⁱ	1.5	15 (3)
N1—H1N1		0.96(3)	C4—	H1C4	1.0	1 (3)
N1—H2N1		0.90(3)	C4	H2C4	0.9	7 (3)
N2-C4		1.478(3)	C I	11201	0.7	(3)
OE11—P1—C	DE13	110.45 (10)	H1N2	2—N2—H2N2	97.	1 (23)
OE11—P1—C	DE12	110.43 (10)	C2 ⁱ —	-C1N1	106	.8 (2)
OE13—P1—O	DE12	117.64 (12)	C2 ⁱ —	-C1—H1C1	113	.9 (15)
OE11—P1—C	DL12	107.93 (8)	N1—	C1—H1C1	109	.4 (15)
OE13—P1—C	DL12	98.48 (10)	$C2^{i}$	-C1H2C1	109	.6 (17)
OE12P1C)L12	111 02 (9)	N1	-C1-H2C1	115	1 (16)
OE21_P2_0)E23	115 67 (9)	HICI	-C H2C1	102	3 (21)
OF21_P2_ 0)I 12	106 11 (8)		C2 N1	102	3(2)
0121-12-0	1112	100.11 (0)	UI-	-0.2INI	115	.5 (2)

supplementary materials

OE23—P2—OL12	105.55 (9)	C1 ⁱ —C2—H1C2	111.2 (14)
OE21—P2—OE22	110.44 (9)	N1—C2—H1C2	95.1 (14)
OE23—P2—OE22	112.77 (9)	C1 ⁱ —C2—H2C2	105.2 (15)
OL12—P2—OE22	105.41 (8)	N1—C2—H2C2	110.5 (16)
P2—OE22—HO22	120.3 (21)	H1C2—C2—H2C2	119.9 (20)
P2—OL12—P1	132.24 (9)	C4 ⁱⁱ —C3—N2	112.1 (2)
Р1—ОЕ13—НО13	108.4 (21)	C4 ⁱⁱ —C3—H1C3	107.0 (15)
C2—N1—C1	112.9 (2)	N2—C3—H1C3	112.2 (15)
C2—N1—H1N1	116.3 (17)	C4 ⁱⁱ —C3—H2C3	117.6 (16)
C1—N1—H1N1	102.2 (16)	N2—C3—H2C3	101.3 (16)
C2—N1—H2N1	103.2 (20)	H1C3—C3—H2C3	106.5 (22)
C1—N1—H2N1	118.2 (20)	N2—C4—C3 ⁱⁱ	115.1 (2)
H1N1—N1—H2N1	104.4 (26)	N2—C4—H1C4	102.4 (14)
C4—N2—C3	105.9 (2)	C3 ⁱⁱ —C4—H1C4	110.6 (14)
C4—N2—H1N2	108.6 (17)	N2—C4—H2C4	106.7 (15)
C3—N2—H1N2	117.8 (17)	C3 ⁱⁱ —C4—H2C4	102.8 (15)
C4—N2—H2N2	117.8 (17)	H1C4—C4—H2C4	119.7 (20)
C3—N2—H2N2	110.1 (17)		

Symmetry codes: (i) -x+1, -y-1, -z+2; (ii) -x, -y, -z+1.